Уважаемые гости, здравствуйте!
Этот блог предназначен тем, кто изучает математику,
тем, кто любит математику,
тем, кто ещё не знает, что любит математику...

пятница, 18 октября 2013 г.

Построение сечений

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью.
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.
Напомним алгоритм построения сечений такого вида (случай:  2 точки принадлежат одной грани).  
1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения. 
2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.
3. Далее повторяем с пункта 1.
Рассмотрим такую задачу.
Построить сечение тетраэдра плоскостью (EFG), причем точки E и G - видимые.
1.  Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF  в плоскости (BCD).
2. Найдем точку пересечения  прямой EF c  ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF,  и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной грани. Это  точки G и K, обе лежат в левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось соединить точки, лежащие в одной грани. Это точки M и H,  и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.

В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:
1.  Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).
2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многранника может находиться не более одной стороны (только одна)  сечения

Попробуйте самостоятельно построить сечение плоскостью (EFG), но теперь точки E и G - невидимые.

Получилось? - Молодцы:))

Если нет, спрашивайте, что непонятно...

Проверить правильность построения вы можете, посмотрев публикацию


Напоследок  попробуйте определить, есть ли ошибка в построении сечений. И если есть, то какая? Ответы свои занесите в форму:



 

Комментариев нет:

Отправить комментарий

Здесь можно оставить свои комментарии